

Geology and Oil-gas Business Institute named after K. Turyssov Department of Chemical and Biochemical Engineering

EDUCATION PROGRAM

6B07125 – <u>CHEMICAL TECHNOLOGY OF ORGANIC</u> <u>SUBSTANCES</u>

Code and classification of the field of education: 6B07 Engineering,

manufacturing and construction industries

Code and classification of areas of study: 6B071 Engineering and Engineering

(0710)

Group of educational programs: 6B060 Chemical engineering and processes

Уровень по НРК: 6

Уровень по ОРК: 6

Year of study: 4

Credits: 240

Almaty, 2022

Educational program 6B07125 - Chemical technology of organic substances

approved at a meeting of the Academic Council of KazNITU named after. K.I. Satpaeva.

Protocol No. _13_ dated "_28_" _04_2022

Considered and recommended for approval at a meeting of the Educational and Methodological Council of KazNITU named after. K.I. Satpaeva.

Protocol No. _7_ dated "_26_" _04_2022

Educational program 6B07125 -Chemical technology of organic substances was developed by the academic committee in the direction «B060 — «Chemical engineering and processes»»

Name	Academic degree/ academic title	Job title	Place of work	sign
	academic committee:		1	1
Amitova Aigul Amantayevna	PhD	Head of the Department	KazNRTU	A
Teaching staff:				U.
Selenova Bagdat Samatovn	Doctor of Chemical Sciences, Professor	Professor	KazNRTU	h
Kerimkulova Aigul Zhadyraevna	Candidate of Chemical Sciences	Assistant Professor	KazNRTU	Ale
Nauryzova Saule Zinagievna	PhD	Associate Professor	KazNRTU	d
Chugunova Nina Ivanovna	Candidate of Chemical Sciences	Associate Professor	KazNRTU	flyf
Nakan Ulantai	PhD	Associate Professor	KazNRTU	Hoto
Ilyin Alexander Ivanovich		Chairman of the Management Board	JSC "Scientific Center of Anti- infectious Drugs"	ant
Employers:			internous Drugo	
Minzhulina Olga Vasilyevna		Head of Production	Spira-Berga LLP, +77772992140	Muf
Rauken Kanat Kabdollayevich		Acting Deputy Chief Technologist	Atyrau Oil Refinery LLP	Aug
Tolkimbayev Gambit Ajdarovich		General manager	Oil and Gas Chemical Association	they

Table of contents

List of abbreviations and designations

- 1. Description of educational program
- 2. Purpose and objectives of educational program
- 3. Requirements for the evaluation of educational program learning outcomes
- 4. Passport of educational program
- 4.1. General information
- 4.2. Relationship between the achievability of the formed learning outcomes according to educational program and academic disciplines
- 5. Curriculum of educational program
- 6. Additional educational programs (Minor)

List of abbreviations and designations

1. Description of educational program

- The educational program (hereinafter EP) is a set of documents developed by the Kazakh National Research Technical University named after K.I. Satpayev and approved by the Ministry of Education and Science of the Republic of Kazakhstan. The EP takes into account the needs of the regional labor market, the requirements of government agencies and relevant industry requirements. The branch of organic and petrochemical synthesis, which uses oil, gas, coal as raw materials, is the leading one and determines the progress of the chemical industry - an important link in the economy of Kazakhstan. Products of organic and petrochemical synthesis, having valuable chemical and physico-chemical properties, are semi-products in the production of polymers, medicinal substances, plant protection products and other synthetic materials. And since the industry of organic and petrochemical synthesis provides raw materials for all other sub-sectors of the chemical industry that produce synthetic materials, it must develop at a faster pace.
- The EP is based on the state educational standard for higher professional education in the relevant field.
- The EP defines program educational goals, student learning outcomes, necessary conditions, content and technologies for the implementation of the educational process, assessment and analysis of the quality of students during training and after graduation.
- The EP includes the curriculum, the content of disciplines and learning outcomes and other materials to ensure a quality education for students.

2. Purpose and objectives of the educational program

The purpose of the EP: Training of specialists with key and professional competencies in the field of production of organic substances, processing of oil, gas, coal and polymers, elastomers, paints and varnishes.

The objectives of this EP are:

- social, humanitarian and professional training of bachelors in the field of chemical engineering in accordance with the development of science and production, as well as with the needs of oil and gas chemical clusters in Kazakhstan, national research centers, master's and doctoral studies of higher educational institutions;

- training of bachelors - technologists who know the raw material base, methods of analytical quality control of raw materials and commercial products, production technologies and areas of consumption of organic substances and materials with fundamental training in physics, mathematics, chemistry, physical and chemical foundations of technologies for obtaining the most important classes of organic substances, production of chemical reagents (additives, surfactants, polymers) used in the production of fuels and petroleum oils, in the processes of extraction, preparation and transportation of hydrocarbon raw materials.

- providing knowledge, skills and abilities that allow analyzing problems in the field of chemical engineering and finding ways to solve them, solve engineering problems in the design of production of organic substances and materials, conduct research work in the field of synthesis and study of the properties of new chemical compounds and materials using information technologies and methods of mathematical planning of experiment.
- preparation of students for professional activities in the conditions of existing production, the formation of skills and abilities to maintain the required level of labor and production discipline; on conducting a technical and economic analysis of production; on the adoption and implementation of management decisions in the face of different opinions.

3. Requirements for evaluating the learning outcomes of an educational program

Formed learning outcomes:

- RO1 to master the specialized vocabulary necessary for the implementation of effective oral and written communications in a foreign language in their professional activities;
- RO2 to use the basic provisions and methods of social, humanitarian and economic sciences in solving social and professional problems;
- PO3 demonstrate a high level of professional knowledge in the field of technology of organic substances and process equipment and the principles of its operation;
- PO4 know the systems and methods for designing technological processes and production modes; prospects for the technical development of the enterprise;
- RO5 be able to use modern information technologies, process information using application programs and databases to calculate the technological parameters of equipment and monitor natural environments;
- RO6 develop design estimates for the production of organic substances, analyze alternative technology options of various levels of complexity;

RO understand the impact of engineering solutions in the global, economic, natural and social context; know the trends of social development of society.

4. Passport of the educational program

4.1. General information

N₂	Field name	Note
1	Code and classification of	6B07 Engineering, manufacturing and construction industries
	the field of education	
		6B071 Engineering and Engineering (0710)
	areas of study	
3	Group of educational programs	6V060
4		6V07101-KhTOV
	program	
5	Brief description of the	The educational program (hereinafter EP) is a set of documents developed by the
	educational program	Kazakh National Research Technical University named after K.I. Satpayev and
		approved by the Ministry of Education and Science of the Republic of Kazakhstan.
		The EP takes into account the needs of the regional labor market, the requirements
6	Purpose of the OP	of government agencies and relevant industry requirements. Training of specialists with key and professional competencies in the field of
0	i urpose of the Or	production of organic substances, processing of oil, gas, coal and polymers,
		elastomers, paints and varnishes.
7	OP type	new
8	NQF level	6
9	ORC level	6
10	Distinctive features of the	The EP was developed taking into account the Atlas of new professions and
	OP	competencies of Kazakhstan in the field of chemical technology of organic
		substances.
11		KK1.Communicativity
	the educational program:	QC 2. Basic literacy in natural sciences
		QC3. General engineering competencies
		QC4. Professional competencies
		QC5. Engineering and computer competencies
		QC6. Engineering and work competencies
		QC7. Socio-economic competencies
12		RO1 to master the specialized vocabulary necessary for the implementation of
	educational program:	effective oral and written communications in a foreign language in their professional activities;
		RO2 to use the basic provisions and methods of social, humanitarian and economic
		sciences in solving social and professional problems;
		PO3 demonstrate a high level of professional knowledge in the field of technology
		of organic substances and process equipment and the principles of its operation;
		PO4 know the systems and methods for designing technological processes and
		production modes; prospects for the technical development of the enterprise; RO5 be able to use modern information technologies, process information using
		application programs and databases to calculate the technological parameters of
		equipment and monitor natural environments;
		RO6 develop design estimates for the production of organic substances, analyze
		alternative technology options of various levels of complexity;
		RO understand the impact of engineering solutions in the global, economic, natural
12	Form of stud-	and social context; know the trends of social development of society.
	Form of study	Daytime (full-time)
	• •	4 years
	Volume of loans	240
		Kaz, Russian and English
	Degree	Bachelor of Engineering and Technology
18	Developer(s) and authors:	in engineering and engineering

4.2. The relationship between the achievability of the formed learning outcomes in the educational program and academic disciplines

№	Name of discipline	Brief description of discipline		ademic dis	<u>erpines</u>		ned learning	g outcomes (codes	5)	
				PO1	PO2	PO3	PO4	PO5	PO6	PO7
				Cycle of bas	ic discipl	ines				
				University	_					
		English is a discipline of the general education cycle. After determining the level (according to the results of diagnostic testing or IELTS results), students are divided into groups and disciplines. The name of the discipline corresponds to the level of English proficiency.		v						
	Kazakh (Russian) language	When moving from level to level, prerequisites and postrequisites of disciplines are observed.	10	v						
		The socio-political, socio- cultural spheres of communication and functional styles of the modern Kazakh (Russian) language are considered. The course covers the specifics of the scientific style in order to develop and activate the professional communication skills and abilities of students, allows students to practically master the basics of the scientific style and develops the ability to produce a structural and semantic analysis of the text.						v		

Modern history of	Required component. The task	5		v				v
Kazakhstan	of studying the discipline is to			v				v
	acquire theoretical knowledge							
	about information processes,							
	new information technologies,							
	local and global computer							
	networks, methods of							
	information protection;							
	obtaining skills in the use of text							
	editors and spreadsheet							
	processors; creation of databases							
	and various categories of							
	application programs.							
Philosophy	Philosophy forms and develops	5						v
	critical and creative thinking,							·
	worldview and culture, provides							
	knowledge about the most							
	general and fundamental							
	problems of being and endows							
	them with a methodology for							
	solving various theoretical							
	practical issues. Philosophy							
	expands the horizon of vision of							
	the modern world, forms							
	citizenship and patriotism,							
	contributes to the education of							
	self-esteem, awareness of the							
	value of human existence. It							
	teaches to think and act							
	correctly, develops the skills of							
	practical and cognitive activity,							
	helps to seek and find ways and							
	means of life in harmony with							
	oneself, society, and the world							
Modulo of coois ==1!+!=	around.	2						
Module of socio-politic knowledge (sociology,	al Studying the course contributes to the formation of students'	3	V					
political science)	theoretical knowledge about							
pontical science)	society as an integral system,							
	provides the political aspect of							
	provides the political aspect of		I	1				

			T T			-			
	training a highly qualified								
	specialist on the basis of modern								
	world and domestic political								
	thought. The discipline is								
	designed to improve the quality								
	of both general humanitarian								
	and professional training of								
	students. Knowledge in the field								
	of sociology and political								
	science is necessary for								
	understanding political								
	processes, for forming a								
	political culture, developing a								
	personal position and a clearer								
	understanding of the measure of								
	one's responsibility.								
Module of socio-pol	itical The module of socio-political	3		v					
knowledge (culturol	ogy, knowledge (culturology,			•					
psychology)	psychology) is designed to								
	acquaint students with the								
	cultural achievements of								
	mankind, for their understanding								
	and assimilation of the main								
	forms and universal patterns of								
	the formation and development								
	of culture. During the course of								
	cultural studies, general								
	problems of the theory of								
	culture, leading cultural								
	concepts, universal patterns and								
	mechanisms for the formation								
	and development of culture, the								
	main historical stages of the								
	formation and development of								
	Kazakhstani culture are								
	considered.								
Cycle of general education disciplines University component									
Fundamentals of ant	i- The discipline studies the	5		•					
corruption culture	essence, causes, causes of	3		V				V	V
	coschee, causes, causes of					1			l

				1			-			,	
		sustainable development of									
		corruption from both historical									
		and modern points of view.									
		Considers the prerequisites and									
		impacts for the development of									
		an anti-corruption culture.									
		Tracks the development of									
		countering corruption on the									
		basis of social, economic, legal,									
		cultural, moral and ethical									
		norms. She studies the problems									
		of forming an anti-corruption									
		culture based on the relationship									
		with various types of social									
		relations and various									
		manifestations.									
	Fundamentals of	The purpose of the discipline is	5			V	v				
	Entrepreneurship and	to give students knowledge of				·					
	Leadership	the theory and practice of									
		entrepreneurial activity,									
		leadership, the skills of their									
		successful application in future									
		professional activities.									
	Ecology and life safety	The discipline studies the	5			v	v			v	
		foundations of entrepreneurial									
		activity and leadership from the									
		point of view of science and									
		law; features, problematic									
		aspects and development									
		prospects. Considers the theory									
		and practice of entrepreneurship									
		as a system of economic,									
		organizational and legal									
		relations of business structures,									
	Cycle of basic disciplines										
				University	compone	ent					
	Mathematics I	The course is based on the study	5	L L L L L L L L L L L L L L L L L L L	v	v	v				
		of mathematical analysis in a	-		•	¥	•				
		volume that allows you to									
1		explore elementary functions									

Physics	and solve the simplest geometric, physical and other applied problems. The main attention is paid to differential and integral calculus. The course program includes differential calculus of functions of one variable, derivatives and differentials, the study of the behavior of functions, complex numbers, polynomials. Indefinite integrals, their properties and methods of calculation. Definite integrals and their applications. Improper integrals. The course studies the basic	5	v				
	physical phenomena and laws of classical and modern physics, methods of physical research, the influence of physics as a science on the development of technology, the relationship of physics with other sciences and its role in solving scientific and technical problems of the specialty. The discipline covers the following sections: mechanics, mechanical harmonic waves, fundamentals of molecular kinetic theory and thermodynamics, electrostatics, direct current, electromagnetism, geometric optics, wave properties of light, laws of thermal radiation, photoelectric effect.						
Mathematics II	The discipline is a continuation of Mathematics 1. The sections of the course include elements	5	v	v	v	V	

	of linear algebra and analytic geometry. The main questions of linear algebra are considered: linear and self-adjoint operators, quadratic forms, linear programming. Differential calculus of a function of several variables and its applications. Multiple integrals. The theory of							
	determinants and matrices, linear systems of equations, as well as elements of vector algebra. Includes elements of analytical geometry in the plane							
	and in space.		Cycle of basi	ic discipl	ines			
			Optional c					
Engineering and computer graphics	This course is designed to study the design of products in various industries and industries, including metrological equipment, as well as the creation of design documentation. Forms students' practical skills in performing drawing and graphic works on the basis of the relevant State standards "Unified system of design documentation" using computer graphics programs.	5			v	V	v	
Introduction to the specialty	The purpose of the discipline is to acquaint students who have begun their studies at the university with the basic and basic provisions of the specialty and study program; development of interest in the chosen profession, the formation of students' competence and understanding of the chosen	4			v	v		

	direction of study, initial professional knowledge about the physical and chemical foundations of the technology of organic substances; formation of technological and ecological thinking among students. The main initial concepts of chemical technology are considered: kinetic laws of chemical transformations, types of reactors and mole balance equations, technological indicators of processes, drawing up technological schemes of chemical processes.						
general chemistry	The purpose of the course is to study the structure of the periodic system of elements and the main characteristics of elements and their compounds arising from it. The nomenclature of chemical compounds, basic chemical laws and concepts, as well as their application in solving professional problems are considered. Methods for studying the physicochemical properties of substances and the main classes of inorganic compounds.	5	v	v			
Organic Chemistry I	The purpose of the discipline is the development of a complex of knowledge and scientific ideas about the fundamental theoretical and experimental foundations of organic chemistry of aliphatic compounds; in students gaining knowledge of	6		v	v	V	

				-			
	the basic concepts of theoretical						
	organic chemistry, mastering the						
	ability to characterize the						
	structure, physico-chemical						
	properties of organic substances,						
	as well as modern methods for						
	the synthesis of organic						
	substances. The course forms the						
	basis of chemical reactions and						
	methods for the synthesis of						
	organic compounds for the most						
	important branches of the						
	chemical and biochemical						
	industries						
Organic Chemistry II	The purpose of the discipline is						
Organic Chemistry II	to study the general patterns of			V	v	V	
	the flow of organic reactions of						
	cyclic compounds, such as cycloalkanes, aromatic						
	hydrocarbons, and heterocyclic						
	compounds. Each class of						
	compounds is considered in						
	terms of their chemical structure,						
	isomerism and nomenclature,	5					
	method of preparation, physical	-					
	and chemical properties, and						
	scope of their application. In the						
	process of mastering this						
	discipline, the student forms and						
	demonstrates competencies that						
	allow applying the obtained						
	basic scientific and theoretical						
	knowledge to solve scientific						
	and practical problems.						
Physical chemistry	To form in students: the ability			v	v	 V	
(thermodynamics)	to understand the physical and			*		*	
· · · ·	chemical essence of processes	F					
	and use the basic laws of	5					
	physical chemistry in complex						
	production and technological						
	production and teenhological				L	l	

[]			1		1			1
	activities. After mastering this							
	discipline, the student must							
	know: the laws of							
	thermodynamics; basic							
	equations of chemical							
	thermodynamics; methods of							
	thermodynamic description of							
	chemical and phase equilibria in							
	multicomponent systems;							
	properties of solutions;							
	fundamentals of							
	electrochemistry; basic concepts,							
	theories and laws of chemical							
	kinetics and catalysis.							
Physical and chemical	The course is designed to			v	v		v	
methods of analysis	understand the principles of			v	v		•	
	research and experimental work							
	on modern analytical tools and							
	the practical use of the results							
	and data obtained. The purpose							
	of the course is to teach students							
	how to use FCMA to study the							
	properties and composition of							
	new organic materials and	-						
	substances. The theoretical	5						
	principles of the methods,							
	methods of computer processing							
	of the results of the experiment							
	are described. Mass							
	Spectrometric Methods. Method							
	of electron paramagnetic							
	resonance (EPR). Method of							
	nuclear magnetic resonance							
	(NMR). radiometric methods.							
Fundamentals of	The discipline considers the			v	v		V	
physicochemical	main physical and chemical			v	v		v	
analysis of oil refining		_						
and petrochemical	analysis of petrochemical	5						
products	synthesis products. The purpose							
r	of the course: obtaining the							
	course. counting the		1		1	1	I	

				1		1			[]
		theoretical foundations of the							
		methodology for the study of oil							
		and oil products, which consists							
		in using a set of methods for							
		isolating and studying individual							
		components and individual							
		compounds; acquisition of							
		practical skills in standard							
		methods of analysis, separation							
		and study of oil and oil products.							
	Chemical kinetics and	The purpose of the discipline is			V	v		v	
	catalysis	to consider the basics of			·	•		,	
		chemical kinetics and catalysis,							
		to give an idea of the							
		mechanisms of chemical							
		reactions. basic laws and							
		regularities that determine the							
		direction and result of processes							
		in homogeneous and							
		heterogeneous systems, methods							
		of analytical representation of							
		these regularities. The							
		educational material contributes							
		to the expansion of students'	~						
		knowledge about the catalysis of	5						
		chemical reactions, the							
		difference and the basic							
		principles of homogeneous,							
		enzymatic and heterogeneous							
		catalysis. During the study of the							
		discipline, the skills of							
		experimental determination and							
		calculation of the rates of							
		chemical transformations, the							
		study of the nature of the							
		catalytic action and intermediate							
		compounds of reagents with a							
		catalyst are instilled.							
	General chemical	The purpose of the course: the	_		v	v		v	
	technology	study of the general patterns of	5		v	v		v	
I						1	1	1	

	the flow of chemical- technological processes (CTP) of the most important chemical industries. The course examines the patterns of chemical transformations in industrial production; basic chemical equipment. Calculation of technical and economic indicators of the process, material and energy balances. industrial catalysis. Basic mathematical models of chemical reactors. Methods for the development of effective chemical-technological processes and systems, methods of energy and resource saving, environmental protection.						
Theoretical Foundations of the Technology of Organic Substances	As part of the course, the student will master the theoretical foundations of modern processes for obtaining organic products based on hydrocarbon raw materials: thermodynamic and kinetic laws, the mechanism of chemical reactions, including catalytic ones, as well as issues of synthesis and analysis of chemical-technological systems of organic synthesis. As a result of studying the course, the student must know the basics of the theoretical laws of designing production processes; methods of analysis and optimization of chemical-technological systems of basic and fine organic synthesis, determination of tactics and strategy of organic	5	v	v	V	V	

	synthesis							
Fundamentals of quality control of organic compounds	The course summarizes data on the organization and conduct of elemental quantitative analysis of organic compounds. As well as the use of analytical chemistry methods for determining the elements of organogens, halogens and some heteroelements and organic compounds in various other objects. The purpose of this course is: the formation of an active position among students and the development of initiative in solving various problems arising in the process of analysis, the development of the ability to present chemical analysis from sampling to the final result as a single technological process using modern methodology.	5		V	V		v	
CAD Chemical Engineering I	The purpose of studying the discipline is to develop the ability to create effective and optimal technologies for various chemical processes using the CemKad modeling computer program. The questions considered in the course are the study of the regularities of hydromechanical and heat exchange processes occurring in various systems, and the development of various calculation methods. Calculation technique for chemical technology devices using a simulation program. The course	5		v	v	v	v	

	forms the student's ability to							
	perform engineering and							
	technological calculations using							
	a computer simulation program,							
	stimulates the creation of							
	various projects.							
Instrumentation for the				V	V	V	V	
	understanding of the regularities							
	of hydromechanical and heat							
	exchange processes occurring in							
	systems with several phases and							
	several components and							
	development of methods for							
	calculating equipment, choosing	-						
	a rational design and	5						
	determining the size of devices.							
	As a result, the student develops							
	competencies that allow to make							
	calculations of processes and							
	devices of hydromechanical and							
	heat exchange processes, to							
	perform constructive							
	calculations of devices.							
	The purpose of the discipline is		V	V	V			
	to study by students the main							
	directions of the modern							
	development of chemistry and							
	physics of polymers. Course							
	Outline: General concepts and							
	terminology in the field of							
	polymers. Molecular mass	_						
	characteristics of polymers.	5						
	Regularities of the chain							
	mechanism of polymer							
	synthesis. Radical and ionic							
	polymerization,							
	copolymerization. Stepwise							
	mechanism of polymerization.							
	Polycondensation and							
	polyaddition. Chemical							

		modification of polymers.						
		Physics of polymers. Flexibility						
		of macromolecules. Molecular						
		and supramolecular structure of						
		polymers. Deformation						
		properties of polymers.						
		Thermomechanical method for						
		studying polymers. Features of						
-		polymer dissolution						
	Processing technology	The purpose of the discipline is			v	V	v	
		to provide students with the						
		necessary professional						
		competencies in the field of						
		chemical technology for the						
		secondary processing of						
		hydrocarbon raw materials. As a						
		result of studying the discipline, the student must: - know the						
		basics of managing chemical						
		and technological processes for						
		processing products of primary	5					
		oil and gas processing; - have						
		the skills to study the physical						
		and chemical properties and						
		composition of raw materials						
		and the quality of hydrocarbon						
		raw materials processing						
		products; - be able to make						
		specific technical decisions in						
		the development of						
		technological processes;						
		To form in students a body of			v	v	v	
		knowledge about the methods of			v	v	v	
		conducting production						
		processes, scientific thinking						
		about understanding the logical	5					
		connection between the						
		chemical structure and reactivity						
		of organic compounds, the						
		processes of their processing,						

	leading to a radical change in						
	their properties. Creation of the						
	basics of theoretical training for						
	students to solve practical						
	problems in the field of basic						
	organic and petrochemical						
	production						
CAD Chemical	The purpose of the discipline is			V	v	V	
Engineering II	the study of modeling chemical-						
	technological processes using						
	the AspenHysys modeling						
	software package. The course						
	studies the basic concepts of the						
	modeling method, methods for						
	constructing a technological	~					
	scheme, characteristics of a	5					
	technological scheme and flows,						
	calculation of the parameters of						
	all flows and equipment. The course forms the ability to						
	develop the optimal technology						
	of a chemical process with a						
	high-quality yield of the target						
	product.						
 Hardware design of	The study of patterns and			- 4			
production of organic	mathematical description of			v	v	V	
substances II	mass transfer processes						
	occurring in systems with						
	several phases and several						
	components. The essence and						
	theoretical foundations of the						
	main processes of chemical	4					
	technology. Mass transfer	4					
	processes, calculation and						
	selection of devices and						
	structures. Comparative analysis						
	of the operation of devices,						
	finding the optimal conditions						
	for carrying out technological						
	processes. Methods for						

		calculating the main processes						
		and apparatuses.						
	Economic aspects of	The purpose of the discipline is				v		74
	organic production	to form in students a body of				v		v
	technology	knowledge about the methods of						
	25	conducting production						
		processes, scientific thinking						
		about understanding the logical						
		connection between the						
		chemical structure and reactivity						
		of organic compounds, the	5					
		processes of their processing,						
		leading to a radical change in						
		their properties. Creation of the						
		basics of theoretical training for						
		students to solve practical						
		problems in the field of basic						
		organic and petrochemical						
		production.						
		The purpose of studying the			v	v	v	
		discipline is to acquire the						
1	technological processes	knowledge necessary for						
		effective use in the development						
		of modern automatic control						
		systems. Gaining skills in building and researching						
		mathematical models.						
		Possession of TAR sections						
		necessary for solving research						
		and applied problems. The	6					
		course "APCS" provides a	U					
		presentation of the sections of						
		the basics of TAP, measuring						
		elements, actuators, functional						
		diagrams. The study of this						
		discipline will allow the student						
		to acquire the skills to choose						
		the types of switching devices						
		and regulators depending on the						
		law of regulation, to develop a						

				1			1	1	
	functional and mathematical								
	model of the control system, to								
	analyze the operation of the								
	system based on quality								
	indicators of regulation.								
Automation of control	The purpose of studying the				v	v	v		
systems	discipline is to form students'				·	•			
	knowledge, skills and gain								
	experience in the development,								
	research and operation of								
	modern automated process								
	control systems, the theory and								
	practice of these systems, as								
	well as the assimilation of the								
	principles of construction,	6							
	technical base, mathematical and	0							
	information support for								
	automation of control systems								
	and further use of this								
	knowledge in future professional								
	activities. Objectives of the								
	discipline: - study of the basic								
	principles of preparation of								
	technological processes and								
	industries for automation;								
· ·	•	Cycle	of major dis	ciplines l	University	•	·		
		0,010	comp	-	c ; c1 .510j				
Technology of	The discipline "Technology of		comp	onent					
production and	production and processing of				v	v		V	
L									
processing of porymers	polymers" includes the study of								
	methods for implementing								
	technological processes for								
	obtaining the main types of	4							
	polymerization,	4							
	polycondensation and								
	chemically modified polymers								
	and polymeric materials based								
	on them. As a result of studying								
	this discipline, students should								
	have: an idea of: modern								

	technologies for the production							
	and processing of polymers							
	know: the physical and chemical							
	bases of polymer processing.							
Enterprise Design	The purpose of the discipline is				v	v	V	
Fundamentals	to study the structures, the						•	
	principle of operation of the							
	main and special equipment for							
	chemical production,							
	familiarization with its main							
	components and details. At the							
	end of the course, the student							
	should know the basic principles							
	of designing and developing a							
	feasibility study for production;	~						
	parameters and modes of	5						
	operation of typical equipment;							
	typical processes of chemical							
	technology, corresponding							
	apparatuses and methods of their							
	calculation; requirements for the							
	technical condition of the							
	equipment; methods of							
	technological calculations of							
	individual components and parts							
	of chemical equipment.							
Processing technology	The purpose of the discipline is			X.	34		X4	
of hydrocarbon raw	to provide students with the			V	V		v	
materials II	necessary professional							
	competencies in the field of							
	chemical technology for the							
	secondary processing of							
	hydrocarbon raw materials. As a							
	result of studying the discipline,	4						
	the student must: - know the							
	basics of managing chemical							
	and technological processes for							
	processing products of primary							
	oil and gas processing; - have							
	the skills to study the physical							
	the skins to study the physical		1			1		

	1		1	1	1	1	•	1	
	and chemical properties and								
	composition of raw materials								
	and the quality of hydrocarbon								
	raw materials processing								
	products; - be able to make								
	specific technical decisions in								
	the development of								
	technological processes.								
	The course provides students				v	v		v	
synthesis enterprises	with a holistic perception of the				•	•		,	
	complex of technological								
	knowledge in the field of								
	equipment and technological								
	production of organic synthesis.								
	The course develops the								
	following skills for students:								
	drawing up the composition of								
	the project (working draft),								
	design estimates, the grounds for								
	its development, the								
	organizational foundations for								
	designing enterprises of organic	6							
	synthesis and polymers,								
	mastering the methods and								
	features of calculating the								
	strength of elements of								
	apparatus and machines. In the								
	course of studying the discipline,								
	students also gain skills in using								
	scientific, technical and								
	reference literature, determining								
	the technical characteristics of								
	apparatus and equipment and								
	evaluating their technical and								
	economic efficiency.								
		(Cycle of maj	or discip	lines				
			Selectable	Compon	ent				
Chemical technology	The purpose of the discipline is				v	v			
of solid fossil fuels	to form students' technological	5			•	v			
	thinking in the field of solid fuel								

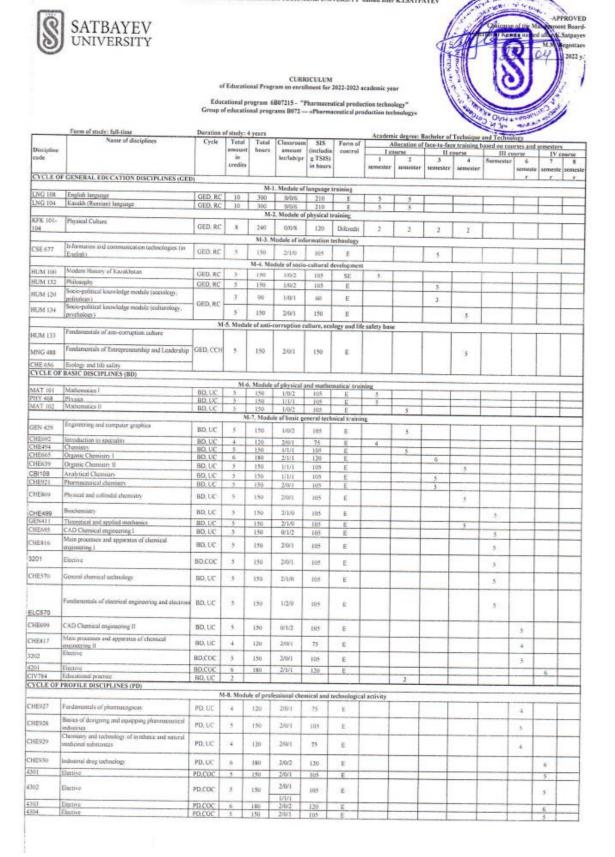
	1					1	· · · · · · · · · · · · · · · · · · ·
	processing technology as an						
	alternative to petroleum fuel, to						
	provide information about the						
	main methods and stages of fuel						
	processing and the prospects for						
	the development of the industry,						
	and to teach students to						
	creatively use general scientific						
	and general engineering						
	disciplines for management,						
	understanding and explanation						
	complex phenomena occurring						
	in the processes of chemical						
	processing of solid fuels						
Thermal decompositior	The purpose of studying the			v	v		
of coal	course "Thermal decomposition			·	•		
	of coal" is to train highly						
	qualified specialists, chemical						
	engineers and technologists for						
	the processing of solid fossil						
	fuels, who know the methods of						
	calculation and design of						
	operational installations and						
	equipment, the formation of a	5					
	scientific and technical						
	worldview among future						
	specialists. The technology of						
	thermal decomposition of coal						
	for the purpose of production of						
	various types of fuels is						
	considered; state and prospects						
	of the raw material base of the						
	coke industry.						
Gas chemistry	The purpose of the discipline is			v	v		
	to form the competence of the						
	student in the field of natural and						
	associated gas processing	5					
	technology. In the course of						
	studying the discipline, the						
	student must: -know the						

ГГ			-				I
	importance of natural gases in						
	the economy and energy, the						
	composition of hydrocarbon						
	gases, their physical and						
	chemical properties, the current						
	state and prospects for the						
	development of the gas						
	processing industry in						
	Kazakhstan and the world; - be						
	able to assess the technical and						
	economic efficiency of						
	technology and have the skills to						
	determine the technical						
	characteristics of apparatus and						
	equipment;						
Production of	The purpose of studying the			v	v		
hydrocarbon raw	discipline: The formation of			v	v		
materials for the	students' systemic knowledge on						
	ustry the theoretical foundations and						
peu cenemieur ma	technology for the production of						
	hydrocarbon raw materials for						
	the petrochemical industry. In						
	the course of studying the						
	discipline, the student must: -						
	know the chemistry and						
	mechanism of thermal and						
	catalytic transformations of oil	5					
	and gas components; - to know	5					
	the physical and chemical						
	properties of hydrocarbons and						
	other components of oil and their						
	influence on the properties of						
	petroleum products, - to know						
	the principles of constructing						
	technological schemes and						
	designing technological						
	processes in the petrochemical						
Compaise on 1	industry.						┟────┤
Corrosion and	The purpose of the course is to	6		V	V		
equipment protect	tion study the fundamentals of the						

of organic substances	theory of corrosion of various						[]
of organic substances							
	types of materials, methods of						
	protecting equipment from						
	corrosion from the standpoint of						
	minimizing the impact on the						
	environment, as well as the use						
	of inhibitor protection and						
	modern methods for studying						
	technological processes and						
	natural environments.						
	Knowledge of the basics of this						
	course will allow you to make						
	the right choice of structural						
	materials when creating						
	chemical equipment in a						
	corrosion-resistant design.						
Preparation and use of	The course presents measures to			v	v		
reservoir and fresh	maintain reservoir pressure,			·	•		
waters for injection	which is a complex of						
into the reservoir	technological equipment that is						
	necessary for the preparation,						
	transportation and injection of						
	water into the oil reservoir. The	F					
	student must know: the theory of	5					
	oil treatment in the fields; theory						
	of the theoretical basis of the						
	requirements for formation						
	waters; use of statistical methods						
	for processing experimental						
	data.						
Technology for the	The purpose of the discipline:			v	v		
	The formation of students'			v	v		
hydrocarbons	systemic knowledge on the						
	theoretical foundations and						
	industrial technologies for the	_					
	production of aromatic	5					
	hydrocarbons from petroleum						
	feedstocks. In the course of						
	studying the discipline, the						
	student must: -know the						
	student must. Know the						

· · · · · · · ·		,				1	1	1 1
		structure, physicochemical and						
		thermodynamic properties of						
		aromatic hydrocarbons; - to						
		know the industrial methods of						
		separation and isolation of						
		individual aromatic compounds						
		from the concentrate of aromatic						
		hydrocarbons; -know industrial						
		technologies for increasing the						
		resources of individual aromatic						
		hydrocarbons and their isomers;						
		The discipline "Modern		v	v			
		petrochemical production" is		•	·			
		intended for professional						
		training of specialists in the field						
		of petrochemical production. As						
		a result of studying the						
		discipline, the student must: -						
		know the chemistry and						
		production technologies of basic						
		petroleum products - raw						
		materials for the production and	5					
		processing of polymers (plastics,						
		chemical fibers, films, rubbers,						
		varnishes, coatings, etc.); - to						
		develop an economically viable						
		and environmentally safe						
		technology for processing raw						
		materials and semi-products of						
		petrochemical synthesis; - have						
		skills in engineering						
		calculations.		 				
		The purpose of studying the		v	v			
	production technology	discipline "Technology for the		•	·			
		production of petroleum oils" is						
		to study the technological and	5					
		physico-chemical foundations of	5					
		the production, separation and						
		purification of distillate and						
		residual petroleum fractions;						

								1
		parameters, hardware design and						
		technological schemes of						
		processes; properties and uses of						
		petroleum oils. As a result of						
		studying the discipline, the						
		student must: - know the main						
		products of petrochemical						
		synthesis, in particular						
		petroleum oils, their						
		classification and specific unique						
		properties; know the chemistry						
		and technology of petroleum oils						
		production; - to know about the						
		main scientific achievements in						
		the field of petroleum oils						
		technology; to be able to						
		describe the basic technological						
		schemes of the main industries;						
Co	oal hydrogenation	The purpose of studying the			v	V		
		discipline is to study the origin,						
		composition and properties of						
		coal, coal hydrogenation						
		processes, as well as the						
		technology for obtaining motor						
		fuels and organic substances						
		from coal hydrogenation						
		products. The molecular	-					
		structure and petrographic	5					
		composition of coals are						
		considered, a macroscopic						
		description of bituminous coals,						
		microcomponents of bituminous						
		coals, organic and inorganic components of coal are given.						
		The influence of various factors						
		on the process of coal						
		hydrogenation is shown.						
	rganic Wastewater	To form the student's						
	reatment	competencies in the field of	5	v	V			
	reatificiti	theory and technology of	5					
		uncory and icennology of		L	l	l		


I I I I I I I I I I I I I I I I I I I			1		1	1		
	purification of water flows of							
	various origins, focused on the							
	use of modern technological							
	solutions in the field of							
	protection of water bodies. To							
	instill skills in the calculation of							
	the main processes, which will							
	allow students to be most							
	professionally guided in the							
	justification of technological							
	solutions in the implementation							
	of integrated approaches in the							
	development of measures for the							
	protection of water bodies and							
	systems for the rational water							
	use of industrial facilities;							
Engineering design	of The course deals with the			v	v	v	v	
chemical-technolog	ical calculation of chemical reactions			•		ļ	•	
processes	occurring in reactors typical of							
	chemical technology processes.							
	The fundamentals of the kinetics							
	of homogeneous and							
	heterogeneous processes are							
	outlined, recommendations are							
	given for compiling the material							
	and energy balances of reactors,	5						
	and issues of their							
	hydrodynamics are highlighted.							
	The thermodynamics of							
	chemical reactions, the schemes							
	and principles of operation of							
	absorber apparatuses, as well as							
	the distinctive features of							
	bubbling and spraying absorbers							
	are considered.							
International	When studying this discipline,			v	v			
standardization and	the student gets acquainted with			•				
certification	the development of certification	5						
	and standardization abroad. The							
	history of the formation of							
				•			•	•

			r	1			1	1	1
		international standardization.							
		International Organization for							
		Standardization - ISO.							
		Organizational structure of ISO,							
		STACO, PLACO, CASCO,							
		INFCO, DECO, COPOLCO,							
		REMCO. Certification at the							
		international level. ISO activities							
		in the field of certification. IEC							
		international certification							
		systems. Participation of							
		international organizations in							
		standardization work. National							
		certification systems of France,							
		Great Britain, USA, Japan.							
		Certification at the regional level							
		The main provisions for the			v	v			
	for the quality of	creation of new schemes for the			·				
	chemical products	synthesis of large-scale							
		production of samples of a new							
		material using technological							
		equipment and processes that							
		meet all requirements with							
		inexpensive starting materials,							
		easy isolation of pure products	5						
		and the absence of	5						
		environmental problems are							
		considered. This course is							
		designed to introduce the basic							
		concepts of chemical							
		engineering for bachelors.							
		instilling in students the ability							
		to independently study							
		educational literature.							

5. Curriculum of the educational program

MINISTRY OF EDUCATION AND SCIENCE OF THE REPUBLIC OF KAZAKHSTAN KAZAKH NATIONAL RESEARCH TECHNICAL UNIVERSITY named after KLSATPAYEY

entrey yo

								60		60		60		- 64	1
	Total based on UNIVERSITY:							31	29	31	29	30	30	33	27
AAPSIII	Military affairs	ATT	0	1	Sec. 1	1									4.5
				M-1	0. Module	of additio	onal types	of training							
ECANO	Defense of the thesis (projeci)	FA	6		1	1.1									6
ECAULO	Preparation and writing of a thesis (project)	FA	ñ	1											ô.
					M-9. M	dule of fi	nal attesta	ation						<u> </u>	
TIV786	Production practice II	PD, UC	з			Lange De	1.1						3		5
CIV785	Production practice 1	PD, UC	2								2				
307	Elektiv	PD, CCH	5	1.50	2/0/1	105	E			-					5
106	Elektiv	PD. CCH	5	150	2/0/1	105	É								5
305	Elektiv	PD, CCH	5	150	2/0/1	105	E						_		5
304	Elektiy	PD, CCH	- 5	1.50	2/0/1	105	E							5	

	Cycles of disciplines	Credits							
Cycle code		required component (RC)	university component (UC)	component of choice (CCH)	Total				
GED	Cycle of general education disciplines	- 51		5	56				
BD	Cycle of basic disciplines		96	16	,112				
.PO	Cycle of profile disciplines		24	36	60				
	Totul for theoretical training:	51	120	\$7	228				
FA	final attestation	12			12				
	TOTAL:	63	120	57	240				

Decision of the Academic Council of Kazatu named after K.Satjinyev. Protocol No 13r "IF" 04 2014. Decision of the Educational and Methodological Council of Kazatu named after K.Satjayev. Protocol No 4 or 36 " 194 2024g.

Decision of the Academic Council of the Institute_____. Protocol Sec or "28"

Vice-Rector for Academic Affairs

Director of IGaOGB

Head of the Department of Chemical and

Council representative from employers

ute_____. Protocol So & or "219" D 2 2022 Thautikov B.A. Syzdykov A.H. Amitova A.A. Kalmuratova A.A.

MINISTRY OF EDUCATION AND SCIENCE OF THE REPUBLIC OF KAZAKHSTAN KAZAKH NATIONAL RESEARCH TECHNICAL UNIVERSITY after K. SATBAYEV

MAJOR ELECTIVE DISCIPLINES educational program for the 2022-2023 academic year admission Educational program 6B07125 - "Chemical technology of organic substances" Group of educational programs B060 — «Chemical engineering and processes»

vear of tudy	Cude of elective	Code of discipline	oline Name of discipline		Cycle	Credits	Total bours	lec/lab/pr	(including SIWT) in	Prerequisite
			M-7. Module of basic general t	echnical tra	loing					
		CHE498	Physico-chemical methods of analysis					2/0/1		S
	2201	CHE472	Fundamentals of physical and chemical analysis of oil refining products and petrochemistry	3	В	5	150	2/0/1	105	
3	2302	CHE637	Theoretical foundations of organic substances technology	4 B	5	150	2/0/1	105		
	2.002	CHE454	Fundamentals of quality control of organic compounds	9	в	2	150	2/0/1	105	
	4201	AUT434	Automation of control systems in chemical engineering processes	7	В	6	180	2/0/2	120	
	1201	AUT435	Automation of control systems	L				2/0/2	120	
			M-8. Module of professional chemical	and technolo	gical activ	ity				
_	1301	CHE611	Chemical technology of solid combustible minerals	7	S	5	150	2/0/1	105	
		CHE687	Thermal decomposition of coal.		3	1. S. I.	155	2/0/1	105	
	4302	CHE146	Gaschemistry		S	5	150	2/0/1	105	
	+302	CHE462	Production of hydrocarbon raw materials for the petrochemical industry	7	3	3	150	2/0/1	105	
		CHE808	Economics technology of organic production				1.002	2/0/2		
	1,1303	CHE671	Preparation and applying of reservoir and fresh water for injection into the reservoir		S	6	180	2/0/2	120	
4	4304	CHE610	Technology for the production of aromatic hydrocarbons	7	s	5	150	2/0/1	105	
	14,104	CHE484	Modern petrochemistry industry	1	2	2	150	2/0/1	105	
	4305	CHE612	Technology for the production of petroleum oils	8	S	5	150	2/0/1	105	-
	4.000	CHE686	Hydrogenation of coal	•	3	3	1.50	2/0/1	105	
	i ()	CHE805	Organic Wastewater Treatment	8				2/0/1	-	
	4306	CHE683	Engineering design of chemical-technological processes		S	5	150	2/0/1	105	1
	1307	MSM109	International standardization and certification					2/0/1		
	+307	CB1120	Normative base of chemical products quality	8	S	5	150	2/0/1	105	

Credits numbers of elective disciplines over	the entire period of study
Cycle of disciplines	Credits
Cycle of basic disciplines (B)	16
Cycle of special disciplines (S)	36
Overall:	57

Head of the Department of Chemical and Biochemical Engineering Representative of Specialty council

Amitova A.A.

SATBAYEV UNIVERSITY

Kalmuratova A.A.

F KazNRTU 703-05 Educational program

6. Additional educational programs (Minor)

Name of additional educational programs (Minor) with disciplines	Total number of credits	Recommended semesters of study	Documents on the results of development additional educational programs (Minor)